3.1910 \(\int (d+e x) \sqrt{a d e+(c d^2+a e^2) x+c d e x^2} \, dx\)

Optimal. Leaf size=210 \[ \frac{\left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^2 d^2 e}-\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{3/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d} \]

[Out]

((c*d^2 - a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*c^2*d^2*e) + (a*d
*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*c*d) - ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*
Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(5/2)*d^(5/2)*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.104133, antiderivative size = 210, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114, Rules used = {640, 612, 621, 206} \[ \frac{\left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^2 d^2 e}-\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{3/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

((c*d^2 - a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*c^2*d^2*e) + (a*d
*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*c*d) - ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*
Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(5/2)*d^(5/2)*e^(3/2))

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx &=\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d}+\frac{\left (d^2-\frac{a e^2}{c}\right ) \int \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{2 d}\\ &=\frac{\left (c d^2-a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^2 d^2 e}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d}-\frac{\left (c d^2-a e^2\right )^3 \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 c^2 d^2 e}\\ &=\frac{\left (c d^2-a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^2 d^2 e}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d}-\frac{\left (c d^2-a e^2\right )^3 \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^2 d^2 e}\\ &=\frac{\left (c d^2-a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^2 d^2 e}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d}-\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.701341, size = 262, normalized size = 1.25 \[ \frac{\sqrt{c d} \left (\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{c d} (d+e x) \left (a^2 c d e^3 (8 d-e x)-3 a^3 e^5+a c^2 d^2 e \left (3 d^2+22 d e x+10 e^2 x^2\right )+c^3 d^3 x \left (3 d^2+14 d e x+8 e^2 x^2\right )\right )-3 \left (c d^2-a e^2\right )^{7/2} \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )\right )}{24 c^{7/2} d^{7/2} e^{3/2} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[c*d]*(Sqrt[c]*Sqrt[d]*Sqrt[c*d]*Sqrt[e]*(d + e*x)*(-3*a^3*e^5 + a^2*c*d*e^3*(8*d - e*x) + c^3*d^3*x*(3*d
^2 + 14*d*e*x + 8*e^2*x^2) + a*c^2*d^2*e*(3*d^2 + 22*d*e*x + 10*e^2*x^2)) - 3*(c*d^2 - a*e^2)^(7/2)*Sqrt[a*e +
 c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*S
qrt[c*d^2 - a*e^2])]))/(24*c^(7/2)*d^(7/2)*e^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B]  time = 0.05, size = 465, normalized size = 2.2 \begin{align*}{\frac{1}{3\,cd} \left ( ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2} \right ) ^{{\frac{3}{2}}}}-{\frac{a{e}^{2}x}{4\,cd}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{dx}{4}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{{a}^{2}{e}^{3}}{8\,{c}^{2}{d}^{2}}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{{d}^{2}}{8\,e}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{{a}^{3}{e}^{5}}{16\,{c}^{2}{d}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-{\frac{3\,{a}^{2}{e}^{3}}{16\,c}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{3\,e{d}^{2}a}{16}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-{\frac{c{d}^{4}}{16\,e}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d-1/4/d*e^2/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a+1/4*d*
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-1/8/d^2*e^3/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^2+1/8*d^2/
e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/16/d^2*e^5/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d
*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^3-3/16*e^3/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/
2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2+3/16*e*d^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e
*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a-1/16*d^4/e*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*
x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.72906, size = 1123, normalized size = 5.35 \begin{align*} \left [-\frac{3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \,{\left (8 \, c^{3} d^{3} e^{3} x^{2} + 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} + 2 \,{\left (7 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{96 \, c^{3} d^{3} e^{2}}, \frac{3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \,{\left (8 \, c^{3} d^{3} e^{3} x^{2} + 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} + 2 \,{\left (7 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{48 \, c^{3} d^{3} e^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/96*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4
+ 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d
*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(8*c^3*d^3*e^3*x^2 + 3*c^3*d^5*e + 8*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 + 2*
(7*c^3*d^4*e^2 + a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^2), 1/48*(3*(c^3*d^
6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e
^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) +
 2*(8*c^3*d^3*e^3*x^2 + 3*c^3*d^5*e + 8*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 + 2*(7*c^3*d^4*e^2 + a*c^2*d^2*e^4)*x)*s
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.26302, size = 304, normalized size = 1.45 \begin{align*} \frac{1}{24} \, \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}{\left (2 \,{\left (4 \, x e + \frac{{\left (7 \, c^{2} d^{3} e^{2} + a c d e^{4}\right )} e^{\left (-2\right )}}{c^{2} d^{2}}\right )} x + \frac{{\left (3 \, c^{2} d^{4} e + 8 \, a c d^{2} e^{3} - 3 \, a^{2} e^{5}\right )} e^{\left (-2\right )}}{c^{2} d^{2}}\right )} + \frac{{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{c d} e^{\left (-\frac{3}{2}\right )} \log \left ({\left | -\sqrt{c d} c d^{2} e^{\frac{1}{2}} - 2 \,{\left (\sqrt{c d} x e^{\frac{1}{2}} - \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt{c d} a e^{\frac{5}{2}} \right |}\right )}{16 \, c^{3} d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*(2*(4*x*e + (7*c^2*d^3*e^2 + a*c*d*e^4)*e^(-2)/(c^2*d^2))*x +
 (3*c^2*d^4*e + 8*a*c*d^2*e^3 - 3*a^2*e^5)*e^(-2)/(c^2*d^2)) + 1/16*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e
^4 - a^3*e^6)*sqrt(c*d)*e^(-3/2)*log(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e +
c*d^2*x + a*x*e^2 + a*d*e))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c^3*d^3)